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Abstraci. A new method for the numerical modelling of the thermal fluctuations in 
micromagnetic systems is presented. The approach is based on the set of stochastic Iangevin 
equations. which are derived F” the energy expression for the system studied. The correlation 
matrix of the corresponding random forces q u i r e d  to prform numerical simulations is evaluated 
using the fluctuation-dissipation theorem following a uansformation to the normal coordinates. 
The method is tested for the finite ID chain of classical magnetic moments. ?he temperature 
dependence of the average magnetization deviation A M / M ( O )  exhibits good agreement with 
analytical theory. 

1. Introduction 

The collective magnetic excitations in ferromagnetic materials are responsible for a variety 
of different phenomena, like spin waves, superparamagnetism and the magnetic aftereffect 
The micromagnetic equilibrium states can be metastable and thermally induced irreversible 
transitions may occur over energy barriers arising from the crystal and the magnetostatic 
anisotropy. 

A theoretical study of the thermally activated remagnetization processes for a fine 
single-domain particle was carried out by Brown [1,2]. The thermal agitation forces were 
represented by a ‘random-field’ term. The Gilbert equation of motion for the magnetization 
was then replaced by a Langevin equation and an analytical treatment was possible close 
to any stationary points where this equation could be linearized. 

Most micromagnetic systems, however, have a rather large number of degrees of 
freedom, so a numerical approach is required. In sections 2 and 3 we present such a 
method for the simulation of small magnetization fluctuations about some local equilibrium. 
As a simple test, we applied the method to a finite I D  chain of classical spins to compare 
our data with analytical results obtained from the spin-wave theory. The implementation 
and the discussion of this application is described in section 4. 

2. Theory 

Consider a closed system at equilibrium that is subdivided into a large number of subsystems. 
Let xi be a set of classical variables that describe the deviation of the subsystems from 
equilibrium pi = 0). We consider quasistationary [3] fluctuations of xi from their mean 
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values and represent them as a column vector x. We assume that the vector x characterizes a 
definite state of partial equilibrium. Thii means that the relaxation time for the establishment 
of intemal thermodynamic equilibrium withiin the subsystems is much less than the time 
required to reach the equilibrium state for the system as a whole (quasistationarity). 

The macroscopic equations of motion involving those variables are in general non- 
linear (dx;/dr = f ( x j ) ) .  If the values xi are sufficiently small, we can expand the time 
derivatives in powers of xi retaining only the linear terms. We then obtain a system of 
linear differential equations describing the relaxation of small deviations in the absence of 
any thermal perturbations [3]: 

or in matrix notation 

-=  dx Lx. m 

To derive the set of Langevin equations, we must express (1) in the form 

d x i  - = - x . j x j  + fi. 
1 dr 

Here Xj are thermodynamically conjugate variables defined by [3] 

as 
I -  axj 

x. - -- 

(3) 

(4) 

where S is the entropy. For a closed system consisting of a body in an extemal medium, 
equation (4) can be written as [4] 

where E is the free energy of the body expressed in terms of x j .  

The coefficients nj in (3) are the kinetic coefficients and the variables fi represent 
random forces responsible for the spontaneous fluctuations. The statistical properties of 
these random forces are specified to be compatible with the known correlation properties 
of the fluctuations xi: 

( f i ( r ) )  = 0 ( f i ( r ) f j ( O ) )  = (nj + r j i ) S ( f ) .  (6) 

The second expression in (6) is a simple form of the fluctuation-dissipation theorem [SI. 
To evaluate the variables X i  we expand the free energy E about the equilibrium value 

Eo up to the second power of small quantities xi .  First order terms in this expansion vanish 
and we obtain 
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In our case the symmetric energy matrix A can be evaluated from the micromagnetic 
energy expression. Due to the interactions between the different subsystems (exchange and 
magnetostatic interactions between the magnetic moments), the matrix A is nondiagonal. 
For this reason, the thermodynamically conjugate variables X i  are not simply proportional 
to the corresponding xi but are given by 

1 X. - - Ajjxj. 
' - k T  

In principle, one can solve the system (8) to calculate the variables xj as a function of 
X i  and then substitute the result into (1) to obtain the desired form (3). It is also useful, 
however, to perform a transformation to the normal coordinates of the system where the 
energy matrix is diagonal since it is then possible to obtain information about the system 
normal modes. 

A transformation x = Qy, or y = QTr can be performed using an orthogonal matrix 
Q chosen in such a way that the matrix D = QTAQ is diagonal: 

(9) 
1 1 1 1 2 

2 2 2 2 i  
E = Eo + -x'Ax = Eo + -yTQ'AQy = Eo + -yTDy = Eo + - Diiyi . 

The variables yi represent the amplitudes of the normal modes and in the new coordinate 
system, the thermodynamically conjugate variables are proportional to the corresponding 
displacements: 

Applying the same orthogonal transformation to the linearized equations of motion and 
adding random forces to the right side, we obtain 

where the matrix K is given by K = Q'LQ. Substituting (10) into (11) we obtain a 
multivariate Langevin equation of the form 

The statistical properties of the random forces are then given by 
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3. Numerical simulations 

Equation (13) is not suitable for numerical simulations because of the presence of the delta 
function. Integrating over a finite time interval At,  we obtain a set of finitedifference 
Langevin equations in the normal coordinates: 

yi(t + At) = yi(t) t Kijyj Af + f i .  (14) 
i 

The statistical properties of the random variables f i  can be deduced from (12): 

( F j )  = 0 (FiFj) = / ~ i j  A!. (15) 

The problem of the optimal choice for the time step At should be considered separately 
for each concrete system. Here we only mention that it obviously should be much larger 
than the typical correlation time for the random forces 131: 

h 
kT AI >> -. 

The statistical properties of the collective excitations of the magnetization can be 
calculated using the following procedure. 

(i) The equilibrium state is determined using any standad method of numerical 
micromagnetics (see, for example, 16.71). For this equilibrium state, the matrices L, A 
and the corresponding orthogonal transformation matrix Q are evaluated. 

(ii) The correlation matrix of the random forces p is then evaluated. 
(iii) The vector x of the moment deviations from equilibrium is initialized as z = 0. 
(iv) The vector of normal coordinates y = Q'z is evaluated. 
(v) The set of Langevin finitedifference equations (14) is used to update the normal 

coordinates y(t)  -P y(t + a t ) .  This step is performed several hundred times before starting 
measurements of the physically interesting quantities (to bring the system into thermal 
equilibrium). 

(vi) The vector z(t + st) = Qa(t + s t )  of moment deviations at successive time 
intervals is used to evaluate the average of physical quantities of interest (e.g. the average 
magnetization). 

4. Implementation of the numerical model 

The method described in sections 2 and 3 is now applied to a finite 1~ chain of N classical 
spins in order to test its validity. The length of the chain is taken to be smaller than the 
coherence length [81 so that ferromagnetic order is preserved For this simple system even 
the dynamical properties can be studied successfully by numerical methods [9, IO, 1 I], but 
here we focus our attention on thermodynamic quantities like the average magnetization, so 
that our results can be compared with analytical theory. 

The spins at the end of the chain are here considered to be fixed For sufficiently 
low temperatures (T << T,) the equilibrium magnetization is near the saturation value: 
( M , ( T ) )  E Ms. A natural choice for the thermodynamic variables of the theory is the spin 
components (Sf ,  S:, i = 2, . . . , N - l) ,  since their ensemble and time averages vanish. 
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These constitute a set of 2 ( N  - 2) degrees of freedom that can support 2(N - 2 )  normal 
modes. 

The motion of the spins in the absence of thermal excitations is described by the non- 
h e a r  Landau-Lifshitz differential equation: 

(17) 

where pi is the magnetic moment of the spin at site i ,  B; is the local effective field and a 
denotes a dissipation constant. 

dSi h T  = , ~ j  x Bi + ~ [ f i i  x (pi x Bj)] 

Equation ( 2 )  for ow system takes the form - 

where the matrix L can be obtained in the limit of small excitations (Sf, S; < S) by 
linearization of (17): 

2 J S a  LfX = --(2&, j - & - I ,  j -si+,. j )  
t i  h 

2 J S  LY? = -(-.B. r.1 . + 6 i-1, j + & + I .  j )  
‘1 h 

t-1. j -&+I.  j )  
xy  21s L. .  = -(B. - 6 .  

h 
2 J S o r  

LVY = -- U&. j - & - I ,  j - & + I .  j ) .  h 

I .  j 

(19) t l  

The spins are coupled by the Heisenberg exchange interaction. The energy can be 
expanded as in (7): 

(20) 
1 E = Eo + - C [ A V S f S j *  + AYSfSJ + A;S!S; + AYSiYS;] 
2 i , j  

to obtain the elements of matrix A: 

A? ‘ I  = AY! V = 0 A!!: ‘ I  = AYY 11 = 2 J [ 2 6 ; , j  - 8j,,-, -Si, j + i l  121) 

with the orthonormal eigenvectors in the form of standing spin waves 

S;, S i  = C sin(kpa) (22) 

where C is a normalization constant and the wavevector k takes discrete values determined 
by the fixed boundary condition (a is the lattice constant): 

n 2R ( N  - 2 ) n  k =  
( N  - ] )a ’  ( N  - 1)a’”” ( N  - 1 ) a ’  
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The computed eigenvalues Dii coincide with an analytical expression: 

Dij =45[1 -cos(kia)] = h o i / S  (26) 

where k; are given by (23). The eigenvalues are related to the energy hmi of the eigenmodes 
through the magnon dispersion relation [IZ]. There is twofold degeneracy, since the 
eigenvalues can acquire only N - 2 discrete values whereas there are 2(N -2) eigenvectors. 

The matrix of the kinetic coefficients defina by (12) is antisymmetric 

y" ' I  -0 - 
yj j  = -yli 

if 4; # Djj 

if Dii = Dj, 

which is consistent with Onsager's principle of the reciprocity in the mutual interference of 
two simultaneous irreversible processes in  the presence of a magnetic field [ 131. 

It is clear from (13) that all the non-diagonal elements in the correlation matrix of the 
random forces vanish and the fluctuations are statistically independenr For this reason, it 
is possible to employ those results of the fluctuation theory applicable to a single variable 
only [13]. 

The first expression in (25) is a statement of the principle of equipartition of thermat 
energy k T / 2  between the modes. From the second expression we obtain a relation for the 
relaxation times T( of the modes: 

An analytic expression for q is also obtained by assuming a solution of the form 
.I - Ae"P' - t  r . e 1 in the linearized equations of motion: S, - 

1 
ami 

r--. , -  

Using (24H27) we obtain 

The correlation function of the random forces is therefore identical for all modes and is 
similar in form to the expression obtained by Brown [I ]  for a single particle. 

The mean square amplitude of the normal modes is independent of the dissipation 
constant a. It is therefore convenient and necessary to choose a such that the timestep At  
in the Langevin equation (equation (14)) satisfies the condition 
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The thermal average occupation of the modes is given by the Bose distribution 
I/(ehm1/" - I )  from which we determine a maximum frequency U,, = lOkT/h above 
which the modes are unlikely to contribute significantly to the magnetization fluctuations. 

The simulations of long-wavelength excitations require orthogonal transformations of 
matrices of excessively large dimensions. These can be avoided in our case since the 
eigenmodes are sinusoidal and a simple atialytic expression relates the fluctuation of the 
magnetization AM/M(O) to the amplitude y; of the modes: 

The thermal excitations of the magnetization were simulated as follows. The diagonal 
elements of the matrices D and K were evaluated from (23). (24) and (28) respectively. The 
non-diagonal elements of matrix K were ignored since they do not influence the statistical 
behaviour of the system. The random variables Fi were obtained from (13) and (15) using 
the G05DDF NAG numerical routine. Starting with the spins in perfect alignment with 
the field (y; = 0). the set of Langkvin equations (14) was used to update the amplitudes 
of the normal modes yi and (30) w& used to evaluate the magnetization. This procedure 
avoids the necessity for diagonalization of the matrix A and the orthogonal transformations 
required by the algorithm in section 3, but yieids identical results. 

The thermal average of the magnetization of a chain of IO0 spins was computed as 
a function of temperature and is shown with the associated rather small statistical errors 
in figure 1. The numerical data are in excellent agreement with spin-wave theory, as is 
indicated by the curve on the same figure obtained by taking the sum over all the spin-wave 
modes [12]: 

Although (31) is derived from quantum sGtistics, the dominant contribution to 
AM/M(O) arises from modes for which the classic limit is valid (hwi < kT), as will be 
discussed below. It was not necessary, therefore, to modify the basic numerical approach 
which is based on classical ideas of fluctuation theory. 

In the low-temperature limit, the change in the magnetization in figure 1 is exponentially 
small as a result of the energy .gap in the finite system. In the high-temperature limit, the 
linear dependence of AM/M(O) on temperature is interpreted pliysically as follows. The 
contribution of a long-wavelength mode @w;/kT << 1). given by (31). is AM; a kT/hwi 
and is proportional to temperature. The contribution of such modes varies according to (24) 
4s l /kz whereas the distribution density of the modes in one dimension is independent of 
frequency (D(k) = 2n/rr). The total contribution is therefore dominated by a small number 
of long-wavelength modes and is therefore linearly dependent on temperature. 

5. Discussion 

In strongly coupled ferromagnetic systems, the modes of thermal excitation are likely 
to have a long wavelength. The spontaneous fluctuations are spatially correlated and 
it is therefore of advantage to perform a transformation to the normal coordinates of a 
system. This transformation provides information conceming the normal oscillation modes. 
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The numerical method used requires knowledge only of the equilibrium magnetization 
configuration in the absence of thermodynamic fluctuations and the micromagnetic energy 
expression. The main limitation is that the fluctuations are sufficiently small that the 
equations of motion for the magnetization are linearizable and the fluctuation-dissipation 
theorem is applicable. The theory is also resmcted to quasistationary fluctuations [3] that do 
not retain a memory of the history of any externally applied fields and satisfy the criterion 
for Brownian motion. For a given equilibrium state the correlation matrix of the thermal 
agitation forces is evaluated and the collective excitations are simulated using a set of 
Langevin equations. 

The main advantage of the numerical method is that it allows the construction of a 
physical realization of the time dependence of multivariate magnetic systems. Time does 
not play the role of a label characterizing the sequential order of generated states, as is the 
case in the Monte Carlo method, but is related to physical time. 

In principle, it is possible to construct a model of the thermal fluctuations without a 
transformation to the normal coordinates; however, the transformation is necessary since 
it provides an estimate for the maximum timestep A f  that should be employed in the 
finitedifference Langevin equations. The optimal timestep is related to the maximum 
eigenfrequency and when it is exceeded there will be an error in the simulation of the high- 
frequency modes of excitation. The transformation is also useful since the lowest eigenvalue 
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provides a measure of the stability of the equilibrium state. When it vanishes the associated 
eigenmode represents the initial mode of magnetic reversal to a new equilibrium state. 

When the spectrum of eigenfrequencies is wide, a difficulty arises, in that the number 
of iterations required to simulate the low-frequency excitations may be too large, since the 
timestep is determined by the maximum frequency. In this case, a detailed study of the 
relative contribution of the different modes is necessary and various approximations might 
be possible. For example, if one is interested in the behaviour of the system only over a 
long timescale, the contribution of the high-frequency modes could possibly be averaged 
out by the method of adiabatic elimination of fast variables used in the theory of stochastic 
processes [14]. Alternatively, if only the equilibrium properties of a system are of interest, 
the normal modes may be treated as being &coupled from one another and only their 
average amplitude needs to be determined. 

Since the transformation to the normal modes involves matrices whose dimension is 
determined by the number of variables in the system, a further difficulty arises in that the 
computational time required may be too long. This imposes, in practice, an upper limit to 
the size of the system studied, estimated to be currently of the order of few hundred degrees 
of freedom. 

The method is clearly applicable to the study of the equilibrium properties of magnetic 
systems. A test was carried out in the present study on a chain of spins with fuced boundary 
conditions in the ferromagnetic range and it was shown that the method is consistent with 
the prediction of spin-wave theory. Potential applications also include for example the study 
of the equilibrium thermal excitations of the magnetization in fine ferromagnetic particles 
that result in the reduction of the magnetic splitting of the Mossbauer specbum [15]. 

The current objective is to extend the method to the study of non-linear collective 
excitations in metastable systems that result in the thermal activation of the magnetization 
over an energy barrier. The modelling of the thermal activation process clearly requires a 
good understanding of the magnetic response of the system in the limit of small ‘linear’ 
excitations. The Fokker-Planck and the Langevin methods represent two altemative but 
equivalent techniques for evaluating the characteristic relaxation time of an activation 
process; however. for multivariate systems the Langevin method is probably simpler to 
implement [ 141. 
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